Hamilton-Jacobi-Bellman equations for Quantum Filtering and Control

نویسنده

  • J. Gough
چکیده

We exploit the separation of the filtering and control aspects of quantum feedback control to consider the optimal control as a classical stochastic problem on the space of quantum states. We derive the corresponding Hamilton-Jacobi-Bellman equations using the elementary arguments of classical control theory and show that this is equivalent, in the Stratonovich calculus, to a stochastic Hamilton-Pontryagin setup. We show that, for cost functionals that are linear in the state, the theory yields the traditional Bellman equations treated so far in quantum feedback. A controlled qubit with a feedback is considered as example.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hamilton-Jacobi-Bellman equations for Quantum Optimal Feedback Control

We exploit the separation of the …ltering and control aspects of quantum feedback control to consider the optimal control as a classical stochastic problem on the space of quantum states. We derive the corresponding Hamilton-Jacobi-Bellman equations using the elementary arguments of classical control theory and show that this is equivalent, in the Stratonovich calculus, to a stochastic Hamilton...

متن کامل

Optimal Control for a Mixed Flow of Hamiltonian and Gradient Type in Space of Probability Measures

Abstract. In this paper we investigate an optimal control problem in the space of measures on R. The problem is motivated by a stochastic interacting particle model which gives the 2-D Navier-Stokes equations in their vorticity formulation as mean-field equation. We prove that the associated Hamilton-Jacobi-Bellman equation, in the space of probability measures, is well-posed in an appropriatel...

متن کامل

On the dynamic programming approach for the 3D Navier-Stokes equations

The dynamic programming approach for the control of a 3D flow governed by the stochastic Navier-Stokes equations for incompressible fluid in a bounded domain is studied. By a compactness argument, existence of solutions for the associated Hamilton-Jacobi-Bellman equation is proved. Finally, existence of an optimal control through the feedback formula and of an optimal state is discussed.

متن کامل

Combined Fixed Point and Policy Iteration for Hamilton-Jacobi-Bellman Equations in Finance

Implicit methods for Hamilton–Jacobi–Bellman (HJB) partial differential equations give rise to highly nonlinear discretized algebraic equations. The classic policy iteration approach may not be efficient in many circumstances. In this article, we derive sufficient conditions to ensure convergence of a combined fixed point policy iteration scheme for the solution of discretized equations. Numeri...

متن کامل

Second Order Hamilton--Jacobi Equations in Hilbert Spaces and Stochastic Boundary Control

The paper is concerned with fully nonlinear second order Hamilton{Jacobi{Bellman{ Isaacs equations of elliptic type in separable Hilbert spaces which have unbounded rst and second order terms. The viscosity solution approach is adapted to the equations under consideration and the existence and uniqueness of viscosity solutions is proved. A stochastic optimal control problem driven by a paraboli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005